

The impact of uncertainty on optimal emission policies

Nicola Botta¹, Patrik Jansson², and Cezar Ionescu³

¹Potsdam Institute for Climate Impact Research, Telegrafenbergs A31, 14473 Potsdam, Germany

²Chalmers University of Technology, Computer Science and Engineering, SE-412 96 Göteborg, Sweden

³University of Oxford, Dept. for Continuing Education, University of Oxford, Ewert House, Ewert Place, OX2 7DD

Correspondence to: botta@pik-potsdam.de

Abstract. We apply a computational framework for specifying and solving sequential decision problems to study the impact of three kinds of uncertainties on optimal emission policies in a stylized sequential emission problem. We find that uncertainties about the implementability of decisions on emission reductions (or increases) have a greater impact on optimal policies than uncertainties about the availability of effective emission reduction technologies and uncertainties about the implications of trespassing critical cumulated emission thresholds. The results show that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. In other words, delaying emission reductions to the point in time when effective technologies will become available is sub-optimal when these uncertainties are accounted for rigorously. By contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make early emission reductions less rewarding.

10 1 Introduction

1.1 About this work

In this article we apply the framework for specifying and solving sequential decision problems presented in Botta et al. (2017b) to understand the impact of uncertainty on optimal greenhouse gas (GHG) emission policies. Specifically, we study the impact of

15 1. Uncertainty about the implementability of decisions on GHG emission reductions,
2. uncertainty about the availability of efficient technologies for reducing GHG emissions,
3. uncertainty about the implications of exceeding a critical threshold of cumulated GHG emissions.

The work is also an application of the computational theory of policy advice under uncertainty proposed in Botta et al. (2017a). The theory supports a seamless approach towards accounting for different kinds of uncertainties and makes it possible to 20 rigorously assess the logical consequences, among others, the risks, entailed by the implementation of optimal policies. We explain what policies are and what it means for a policy sequence to be optimal in section 2.3.

1.2 Sequential decision problems and climate change

In many decision problems in the context of climate change, decisions have to be taken *sequentially*: emission rights are issued year after year, emission reduction plans and measures are iteratively revised and updated at certain (perhaps irregular) points in time, etc.

5 In its fourth Assessment Report on Climate Change (2007), the Intergovernmental Panel on Climate Change (IPCC) has pointed out that responding to climate change involves “an iterative risk management process that includes both mitigation and adaptation, taking into account actual and avoided climate change damages, co-benefits, sustainability, equity and attitudes to risk.”

10 The paradigmatic example of iterative, sequential decision problems in the context of climate change is that of controlling GHG emissions. In GHG emission control problems, a decision maker or a finite number of decision makers (countries) have to select an emission level or, equivalently, a level of emission abatement (reduction) with respect to some reference emissions. The idea is that the selected abatement level is then implemented, perhaps with some deviations, over a certain period of time. After that period another decision is taken for the next time period.

15 Implementing abatements implies both costs and benefits. These are typically affected by different kinds of uncertainties but the idea is that, for a specific decision maker, a significant part of the benefits come from avoided damages from climate change. Avoided damages essentially depend on the overall abatements: higher global abatements lead to less damages and thus higher benefits. In contrast, costs are very much dependent on the abatement level implemented by the specific decision maker. Here, higher emission reductions cost more than moderate emission reductions.

20 It turns out that, when considering a single decision step and for fairly general and realistic assumptions on how costs and benefits depend on abatement levels, the highest global benefits are obtained if all decision makers reduce emissions by certain “optimal” amounts Finus et al. (2003); Helm (2003); Jobst et al. (2011).

25 In this situation, however, many (if not all) decision makers typically face a free-ride option: they could do even better if they themselves would not implement any emission reduction (or, perhaps, if they would implement less reductions) but all the others would still comply with their quotas. It goes without saying that if all players fail to comply with their optimal emission reduction quotas, the overall outcome will be unsatisfactory for all or most players.

30 This situation is often referred to as an instance of the “Tragedy of the Commons” Hardin (1968) and has motivated a large body of research, among others, on coalition formation and on the design of mechanisms to deter free-riding. These studies are naturally informed by game-theoretical approaches and focus on the non-parametric nature of decision making. The sequentiality of the underlying decision process and the temporal dimension of decision making are often traded for analytic tractability. For a survey, see Jobst et al. (2011).

Another avenue of research focuses on the investigation of optimal global emission paths or, as we shall see in section 2.3, of optimal sequences of global emission policies. Here, the core question is how uncertain future developments, typically, the introduction of new technologies or the crossing of climate stability thresholds, shall inform current decisions. In a nutshell,

the problems here are *when* global emissions should be reduced and by *how much* given the uncertainties that affect both our understanding of the earth system and the socio-economic consequences of implementing emission reductions.

In these kinds of studies, the presence of multiple decision makers with possibly conflicting interests and the question of *how* emission reductions can actually be implemented is almost always neglected. This makes it possible to apply control 5 theoretical approaches and to fully account for the temporal dimension of sequential emission games. This is also the approach followed in this work. For a survey of sequential decision problem under uncertainty in climate change see A. and Darshan (2011); Sonja (2006) and references therein.

1.3 Stylized sequential emission problems

One can try to understand the impact of uncertainties on optimal emission policies for a specific, real (or, more likely, realistic) 10 emission problem. This requires, among others, specifying an integrated climate-economy assessment model or, as done in Webster (2008), some tabulated version of the model underlying the problem. The approach supports drawing conclusions which are specific for the problem under investigation and is what is typically done in applied policy advice. On the other hand, studying a specific, realistic problem makes it difficult to draw general conclusions and is well beyond the scope of this work.

15 An alternative approach towards understanding the impacts of uncertainties on optimal policies is to study a “stylized” emission problem. A stylized emission problem does not attempt at being realistic. Instead, it tries to capture the essential features of a whole class of problems and support general instead of specific conclusions. This is the approach followed in this paper.

1.4 Outline

20 In the next section we introduce sequential emission problems and explain what it means for sequences of emission policies to be optimal. We discuss the most important differences between deterministic (certain) problems and emission problems under uncertainty. In section 3 we discuss some important traits of decision making under uncertainty. The discussion is meant to prepare the specification of the stylized emission problem presented in section 4. In section 5 we study the impact of the uncertainties (1)–(3) on optimal policy sequences for our stylized problem. We draw preliminary conclusions and outline future 25 work in section 6.

2 Sequential emission problems

As anticipated in the introduction, in this work we study the impact of uncertainties on optimal emission policies from a control theoretical (as opposed to a game theoretical) perspective. Thus, the focus is on a single decision maker and on how 30 uncertainties affect the questions of *when* global emissions shall be reduced and by *how much* as opposed to the question of *how* emission reductions can actually be implemented in a situation of mutual competition.

2.1 Sequential emission processes

If we focus the attention on a single decision maker and on global emissions, sequential emission problems can be described quite straightforwardly. At the core of any such problems one has a sequential emission *process* (SEP). Informally, a sequential emission process can be described in terms of three notions.

5 The first notion is that of a *state*. A state represents the information available to the decision maker at a given decision step. Typically, the state of a decision process consists of a number of aggregated measures. For instance, economic growth measures, GHG concentration measures, current emission level, etc.

Often, the information available to the decision maker is imperfect. For instance, for a given measure, the decision maker might only be able to know a probability distribution instead of a precise value. Another possibility is that the decision maker 10 only knows that, e.g., a GDP measure lies within certain bounds.

In the stylized sequential emission problem discussed in section 4, for example, the state consists of a tuple of four values. These represent an amount of cumulated GHG emissions, an implemented emission level, a level of availability of efficient technologies for reducing GHG emissions and a state of the world. In that problem, we will assume that the decision maker can only distinguish between low and high emissions

15 $EmissionLevel = \{ Low, High \}$

and available or unavailable efficient GHG emission reduction technologies

$$Technology = \{ Available, Unavailable \}$$

Similarly, the state of the world will be just good or bad:

$$World = \{ Good, Bad \}$$

20 In realistic SEPs, decision makers typically have to select between more than two emission levels, efficient technologies for reducing GHG emission are available to certain degrees and the state of the world is slightly more multifaceted than just good or bad.

The second notion that characterizes a sequential emission process are the *controls* available to the decision maker. In the context of climate change studies, controls are often referred to as options, actions or policies. To avoid confusion with the 25 notion of policy from section 2.3 below, we will call them controls.

In GHG emission problems, controls are often phrased in terms of abatement levels or, equivalently, in terms of maximum GHG emissions growth rates. Thus, for instance, in Webster (2000) and over the first decision step (for the time interval between 2010 and 2019) controls can be one of eight values: 0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4. Here, a value of 0.4 represents a maximal emissions growth rate of 0.4%. In the emission problem of section 4, we will further oversimplify this 30 picture and only consider low and high GHG emissions.

Notice that, in general, not all controls are available in every state and at every decision step. In other words, the abatement levels that can be selected in a given state can depend on that specific state. Thus, in our problem from section 4, we allow

the probability of implementing low (high) emissions in the next period depend on the current emission level. As discussed in Webster (2008), the probability of implementing low (high) emission levels in the next period is higher if the current emission are already low (high) than if the current emissions are high (low). This kind of uncertainty account for, among others, the inertia of legislation and, of course, political instabilities. Thus, one can fully describe the states and the controls of a sequential decision process by defining two functions:

$$State : (t : \mathbb{N}) \rightarrow Set$$

$$Control : (t : \mathbb{N}) \rightarrow (x : State t) \rightarrow Set$$

The interpretation is as follows: *State t* denotes the set of states the decision maker can observe at the t -th decision step. Similarly, *Control t x* explains which controls are available to the decision maker at decision step t and in state x . Notice that, consistently with Botta et al. (2017b, a) and as common in functional languages, we denote function application by juxtaposition. Thus, for $f : X \rightarrow Y$ and $x : X$, $f x : Y$ represents the value of f at x . Similarly, functions of more than one variable are given in “curried” form¹: we write $(g x) y : Z$ or simply $g x y : Z$ (function application is assumed to be left-associative) to denote the value of the function $g x : Y \rightarrow Z$ at $y : Y$.

Notice also that, in the signature of *Control*, the type of the second argument, *State t*, depends on the value of the first argument, t . We say that *Control* is a *dependently typed* function Norell (2007); Brady (2013, 2017).

The third notion that characterizes a sequential emission process is that of a *transition function*. Informally, transition functions describe how states change, at each decision step, as a consequence of the controls selected by the decision maker. Thus, in a deterministic decision process the transition function has the type

$$next : (t : \mathbb{N}) \rightarrow (x : State t) \rightarrow (y : Control t x) \rightarrow State (t + 1)$$

Again, the interpretation is that for every $t : \mathbb{N}$, $x : State t$ and $y : Control t x$, $next t x y$ is *the* new state at decision step $t + 1$. Notice that the time between two successive decisions does not need to be constant. In a time-dependent decision process, for instance, there could be a function

$$time : (t : \mathbb{N}) \rightarrow Real$$

with $time(t + 2) - time(t + 1) \neq time(t + 1) - time(t)$ for all (or, perhaps, only for certain) values of t . In Webster (2000), for instance, the author investigates two-steps decision problems in which the first period extends over 10 years and the second period extends over 80 years.

2.2 Sequential emission problems

A decision process becomes a decision problem when we fully specify the costs and the benefits that are associated with each transition. This can be done by defining a *reward* function. A reward function is a function that associates a value, at each decision step, to every current state, selected control and next state:

¹The idea that functions of more than one variable can always be written as functions of just one variable (that return functions as result) was originally proposed by Schönfinkel in 1924 Schönfinkel (1924) and popularized by Haskell B. Curry in Curry (1958). The operation is since the referred to as *currying*. Its inverse is called *uncurrying*.

$reward : (t : \mathbb{N}) \rightarrow (x : State t) \rightarrow (y : Control t x) \rightarrow (x' : State (t + 1)) \rightarrow Val$

As usual, we write $reward$ in curried form and $reward t x y x' : Val$ denotes the reward of selecting the control y in x at step t and ending up in x' . Typically, Val is \mathbb{R} . An obvious question is: Why shall $reward$ explicitly depend on x' ? If x' is the next state

5 $x' = next t x y$

it seems that $(t : \mathbb{N}) \rightarrow (x : State t) \rightarrow (y : Control t x) \rightarrow Val$ would be a more appropriate signature for $reward$. The reason for including a new state x' in the signature of $reward$ is uncertainty, as we explain in the following paragraphs. We have seen that, in deterministic decision processes, transition functions have the type

$(t : \mathbb{N}) \rightarrow (x : State t) \rightarrow (y : Control t x) \rightarrow State (t + 1)$

10 15 What if the decision process is affected by uncertainties? If selecting an abatement level in a given state has uncertain outcomes (perhaps because of externalities or because the consequences of implementing certain emission reductions are not fully understood), it would be unsuitable to describe the decision process in terms of a transition function that returns a single next state. In this case, the transition function should return a set of *possible* next states or a probability distribution of next states. As detailed in Botta et al. (2017b, a), we can account for different kinds of uncertainties in decision processes with transition functions of the form

$next : (t : \mathbb{N}) \rightarrow (x : State t) \rightarrow (y : Control t x) \rightarrow M (State (t + 1))$

Here, M is a functor. It represents the type of uncertainties underlying the decision process. For deterministic processes, M is just the identity functor: $M = Id$. For non-deterministic processes, M is the powerset functor. For stochastic processes, M represents probability distributions. This is the case considered in this work. Thus, we take $M = Prob$ where $Prob X$ is the 20 type of simple probability distributions² on X . Therefore, $next t x y$ is a probability distribution on next states that is, a value of type $Prob (State (t + 1))$. The states in $next t x y$ are those that can be obtained after decision step t by selecting y in state x . Thus, in a stochastic decision process, selecting a control does not yield a unique next state but a whole set of possible next states with their probabilities. Therefore, the reward function has to explicitly depend on x' because this cannot be computed from the current state x and the selected control y unambiguously. This justifies the signature of $reward$ as given above.

25 30 We can summarize the results obtained so far in the observation that stochastic sequential emission problems can be specified in terms of four functions:

$State : (t : \mathbb{N}) \rightarrow Set$

$Control : (t : \mathbb{N}) \rightarrow (x : State t) \rightarrow Set$

$next : (t : \mathbb{N}) \rightarrow (x : State t) \rightarrow (y : Control t x) \rightarrow Prob (State (t + 1))$

$reward : (t : \mathbb{N}) \rightarrow (x : State t) \rightarrow (y : Control t x) \rightarrow (x' : State (t + 1)) \rightarrow Val$

²In a nutshell, simple probability distributions are probability distributions with finite support, see Botta et al. (2017a).

We define these functions for our stylized emission problem in section 4. For the time being, we need to better understand the decision problem that four such functions specify. This is crucial for understanding the notions of policy and of policy sequence introduced in the next section.

The idea is that, for a fixed number of decision steps, the decision maker seeks controls (emission levels) that maximize a sum of the rewards obtained over those steps. The emphasis here is on “a sum”: depending on the specific problem at stake, future rewards might need to be discounted and the way values of type *Val* are added up might not be completely trivial. As explained in detail in Botta et al. (2017a), fully specifying stochastic sequential decision problems requires defining *State*, *Control*, *next*, *reward* and choosing a measure for weighting uncertain outcomes. Formally, a measure is just a function that reduces probability distribution on values to values

10 $meas : Prob\ Val \rightarrow Val$

The expected value function is probably the most widely used measure in the study of stochastic sequential decision problems. But other measures are possible. Depending on the specific problem and on the kind of uncertainties, other measures might be more suitable than the expected value. In section 4, we walk the reader through the full specification of our stylized emission problem, included uncertainty measures.

15 Solving sequential decision problems is not trivial. For this, we instantiate the generic backward induction algorithms presented in Botta et al. (2017b, a). We do not need to discuss these methods in detail here. But, before we move to section 4, it is important to achieve a good understanding of what it means to solve a stochastic sequential decision problem and of what it means for sequences of policies to be optimal.

In the rest of this section, we informally discuss the notions of policy, policy sequence and optimality of policy sequences. 20 We do so in the context of sequential emission problems but the ideas apply to sequential decision problems in general. In section 3, we discuss a number of basic facts about sequential emission problems. These, too, apply to sequential decision processes without loss of generality.

2.3 Emission policies

We have pointed out that, in stochastic sequential emission problems, selecting an emission (abatement) level at a given decision 25 step and in a given state does not usually yield a unique next state. Instead, we obtain a probability distribution on next states. The distribution encodes the uncertainties associated with the decision process at study. Thus, for instance, the decision maker might select to reduce emissions by 2% but what actually gets implemented is a smaller reduction, perhaps because of political inertia or as a consequence of an increased economic activity.

One consequence of uncertainties is that, even if the decision maker could fix a priori an emission schedule or path³, she 30 would not know the state obtained after a fixed number of decision steps. This is, again, because each single step yields a probability distribution on next states, not a single next state.

³Strictly speaking, this is impossible because, as we have seen, what are feasible emissions in a given state may depend on that state.

Thus, the best a decision maker can hope to obtain as a solution of a stochastic sequential emission problem is a sequence of rules that tell her which control (abatement level) to select for each decision step and, at that step, for each possible state.

In control theory, such “rules of action” are called policies. This is also the sense in which the word policy has been used in Botta et al. (2017b, a). The control theoretical notion matches quite well the notion of strategy in game theory Fudenberg and Tirole (1991), but notice that, in plain English, the term policy is often used to denote a plan of action rather than a rule of action.

Here we follow the control theory standard and policy sequences are just sequences of functions, one for each decision step. A sequence of policies for $n + 1$ decision steps consists of a policy p for the t -th decision step and of a policy sequence ps for further n steps. Formally we write

10 $(p :: ps) : PolicySeq t (n + 1)$

with $p : Policy t (n + 1)$ and $ps : PolicySeq (t + 1) n$. Here, $::$ is the operator that prepends a policy to a (possibly empty) policy sequence, see sections 3.5, 3.7 and 3.9 of Botta et al. (2017a). More formally, if $ps = [p1, p2, p3]$ then $p :: ps = [p, p1, p2, p3]$ for all $p : Policy t (n + 1)$, $ps : PolicySeq (t + 1) n$.

But what does it mean for a sequence of emission policies to be optimal? The decision maker aims at maximizing the sum of rewards over a fixed number of steps. Thus, $(p :: ps)$ is *an* optimal policy sequence for $n + 1$ decision steps iff no other sequence attains a higher sum of rewards (over $n + 1$ steps) for any given $x : State t$.

While fairly intuitive, formalizing this notion of optimality is not completely trivial. This is because, in a stochastic emission problem, a selected abatement level does not entail a unique next state, as explained above. Thus, for any *possible* next state (and, therefore, for any possible value of taking n further decision steps taken with the policies of ps and starting from that state) we have a corresponding reward and a probability. Such a probability distribution of rewards has to be measured with *meas* in order to obtain the value of making $n + 1$ decision steps according to the policy p and to the policy sequence ps .

In Botta et al. (2017b, a) we discuss the computation of the value of policy sequences in great detail. For the purpose of this work, it is sufficient to recognize that one can precisely define a function

$$val : (x : State t) \rightarrow PolicySeq t n \rightarrow Val$$

25 In the theory of sequential decision problems, val is called the value function. As one would expect, $val x ps$ is the value, in terms of the measured sum of possible rewards, of performing n decision steps with the policy sequence ps and starting in state x . Crucially, $val x ps$ only depends on *State*, *Ctrl*, *next*, *reward*, *meas* and on the rule for adding up rewards.

The value function allows us to give a precise meaning to the intuitive notion of optimality of policy sequences discussed above. More importantly, it allows us to actually compute optimal sequences of policies, at least for decision problems that 30 fulfill certain natural conditions.

Again, a comprehensive discussion of the notion of optimality and of the conditions under which optimal policy sequences can be computed goes well beyond the scope of this work. We refer the interested reader to Botta et al. (2017a) and close this section by recalling an often neglected fact on decision making under uncertainty.

A fundamental difference between decision making under deterministic transition functions and decision making under uncertainty is that, in the latter case, regret cannot, in general, be avoided. Here, by regret we mean a judgment in hindsight, often triggered by an unlucky sequence of transitions. Thus, for instance, a system for optimal routing may recommend a driver to leave a highway in order to avoid an upcoming traffic jam. On the alternative road, the driver may get involved in 5 a car accident and finally regret having left the highway. Of course, the driver's regret does not change the fact that leaving the highway was a best choice (under the problem's reward function, measure of possible rewards, etc.) at the point in time in which she had to make her choice.

In both the deterministic and in the uncertain case, the notion of "best decision" is the same: at, say, decision step t and in 10 $x : \text{State } t$, a best decision $y^* : \text{Ctrl } t \ x$ is a decision that cannot be bettered (in terms of sum of possible rewards) given the decision problem (that is, the functions *State*, *Ctrl*, *next*, *reward*, the measure *meas*, and the rule for adding rewards) and a sequence of policies (optimal or not) for taking n further decisions.

But when the outcome of a decision step is a probability distribution on next states, we will have (possibly infinitely) many 15 possible trajectories of length $n + 1$ starting in x instead of just one. In general, there is nothing preventing some of these trajectories to contain states that make any best decision in x regrettable. This is true even for trajectories of length 1 that is, for $n = 0$.

3 Logical consequences of SEPs

In this section we discuss some logical consequences of the notions introduced in 2. A first consequence of the notion of 20 optimal policy sequence is that optimal decisions may vary over time: a best control at a given step does not need to be a best control at a subsequent (or previous) step even if the decision maker observes the same state at both decision steps. There is nothing worrying with this fact: time-inconsistency of optimal policies and Bellman's principle of optimality Bellman (1957) are in fact perfectly consistent!

Another consequence of the notions introduced in section 2 is that exploiting available information is crucial in decision 25 making under uncertainty. We have seen that, under uncertainty, regret cannot in general be avoided. In spite of this fact, the notion of optimal policy sequence and of "best" decision are both clear and compelling: optimal policy sequences for SEPs provide decision makers with rules for selecting emission levels that, at any decision step, cannot be bettered given the information available to the decision maker at that step.

The crucial point is exploiting the information available at a given decision step. As seen in section 2, this information is 30 coded in the notion of *State* and the mechanism for exploiting such information are policies or action rules. Taking decisions on the basis of optimal policies is in most cases better than selecting controls according to fixed (ex-ante) action plans. This is because, in contrast to fixed action plans, policies provide an action for every possible state that can eventually be reached (ex-post) at a given decision step. They account for all the information available to the decision maker at that step. Further, optimal policies entail actions that cannot be bettered.

In section 5, we discuss optimal policies for the emission problem of section 4. Because these policies are computed using the verified framework presented in Botta et al. (2017b, a), they have been machine-checked to be optimal: at each decision step, they make best use of the information available at that step. Thus, we know (in spite of the uncertainties affecting emission problems, for certain!) that the conclusions that we draw for our uncertain emission problem are logical consequences of the 5 problem specification. In other words, we can rule out our the possibility that computational artifacts affect our conclusions.

A third obvious logical consequence of the the notions introduced in the previous section is that best controls and optimal policies are not, in general, unique. In section 5 we discuss a problem setup in which both increasing and decreasing emissions is optimal. When applying optimal control to inform policy advice and decision making is important to keep in mind that optimal policies are not necessarily unique: different optimal emission sequences can yield different sets of possible emission 10 paths. Decision makers might not be able to distinguish them in terms of measures of possible sums of rewards, but they still might have reasons to prefer certain optimal emission policies to others. For instance, precautionary approaches might lead decision makers to prefer optimal policies that entail low risk levels to high risk optimal policies.

Another logical consequence of decision making under uncertainty is that the value of policies depends not only on the problem-specific reward function and on the way rewards are added (e.g. via discounting) but also on how the decision maker 15 weighs uncertain outcomes. This is captured by the measure function *meas*. Different measures reflect different attitudes or dispositions, e.g., towards risk.

As explained in Ionescu (2009), decision makers are free to choose whatever measure they like as far as it fulfills a monotonicity condition. Informally, the monotonicity condition says that if one increases the values of a probability distribution, its measure shall not decrease. Formally, one can express the monotonicity condition on *meas* as:

20
$$\begin{aligned} measMon : \{ A : Type \} &\rightarrow \\ (f : A \rightarrow Val) &\rightarrow (g : A \rightarrow Val) \rightarrow \\ ((a : A) \rightarrow (f a) \leq^* (g a)) &\rightarrow \\ (ma : Prob A) &\rightarrow meas (fmap f ma) \leq^* meas (fmap g ma) \end{aligned}$$

It is easy to see that the expected value in much the same way as worst and best case measures fulfill this condition. But, 25 as pointed out by Ionescu Ionescu (2009), likelihood-based measures are typically non-monotonic. It is a responsibility of scientific advisors to make sure that decision making is informed by meaningful, monotonic measures.

4 A stylized sequential emission problem

In this and in the next section, we study how optimal sequences of GHG emission policies are affected by:

1. Uncertainty about the implementability of decisions on GHG emission reductions.
- 30 2. Uncertainty about the availability of efficient technologies for reducing GHG emissions.
3. Uncertainty about the implications of exceeding a critical threshold of cumulated GHG emissions.

As anticipated in the introduction, we first specify a stylized sequential emission problem that accounts for all three sources of uncertainty and yet is simple enough to support investigating the logical consequences of different assumptions on such uncertainties. In section 5 we discuss the optimal policies obtained for our stylized problem under different assumptions.

We specify our stylized emission problem by instantiating the theory for sequential decision problems discussed in Botta 5 et al. (2017b, a). Technically, this is done by defining all the undefined variables in the modules that implement the theory. For the implementation provided in

`SequentialDecisionProblems`⁴

these are the undefined variables (holes) in `CoreTheory`, `FullTheory` and in the ancillary modules

`Utils`,

10 `CoreTheoryOptDefaults`,

`FullTheoryOptDefaults`,

`FastStochasticDefaults`,

`TabBackwardsInduction` and

`TabBackwardsInductionOptDefaults`.

15 For a detailed discussion on how to specify a sequential decision problem using the theory implemented in `SequentialDecisionProblems`, see Botta et al. (2017a). In the rest of this section, we skip most technical details and focus on the specification of the emission problem from an applicational perspective. A complete, commented implementation of our specification is available in `SequentialDecisionProblems/applications/EmissionGame2`.

As anticipated in the introduction, we specify our stylized emission problem as a stochastic sequential decision problem. 20 Thus, $M = \text{Prob}$. We have to define the four functions `State`, `Control`, `next` and `reward` discussed in section 2. We start by defining the controls, that is the options available to the decision maker.

4.1 Controls

In our stylized emission problem, at each decision step, the decision maker can only select between low and high GHG emissions. Thus,

25 $Control\ t\ x = LowHigh$

where `LowHigh` is a type inhabited by only two values: `Low` and `High`. The idea is that low emissions, if actually implemented, increase the cumulated GHG emissions less than high emissions.

⁴in <https://gitlab.pik-potsdam.de/botta/IdrisLibs>

4.2 States

At each decision step, the decision maker has to choose between low and high emission levels on the basis of four data: a measure of cumulated GHG emissions, the current emission level (itself either low or high), the availability of effective technologies for reducing GHG emissions and a “state of the world”. Effective technologies for reducing GHG emissions can 5 be either available or unavailable. The state of the world can be either good or bad:

$$\text{State } t = (\text{CumulatedEmissions } t, \text{LowHigh}, \text{AvailableUnavailable}, \text{GoodBad})$$

The idea is that the decision process starts with zero cumulated emissions, high emission levels, unavailable GHG technologies and with the world in a good state. In these conditions, the probability for the world to turn to the bad state is low. But if the 10 cumulated emissions increase beyond a fixed critical threshold, the probability that the world becomes bad increases. If the world is in the bad state, there is no chance to come back to the good state. Similarly, the probability that effective technologies for reducing GHG emissions become available increases after a fixed number of decision steps. Once available, effective technologies stay available for ever.

In a realistic problem, the capability of actually implementing a decision on a given GHG emission level typically depends on a variety of factors. In our stylized problem, we follow Webster (2000, 2008) and focus on the uncertainties about the 15 implementability of decisions on GHG emission reductions that come from inertia: implementing low emissions is easier when low emission measures are already in place than when the current emissions are high. Similarly, implementing high emission measures is easier if the current emissions are high than under low emissions regulations.

4.3 Transition function

We have defined *State t* to be a tuple of values representing cumulated GHG emissions, the current emission level, the availability 20 of effective technologies for reducing GHG emissions and the state of the world at decision step *t*. As our stylized emission problem is stochastic, its transition function at decision step *t* yields a probability distribution on values of type *State (t + 1)*.

The idea is that low emission levels leave the cumulated emissions unchanged and high emissions increase the cumulated 25 emissions. Without lost of generality, we can take such increase to be one. We have mentioned that the probability of the state of the world to become bad depends on a critical cumulated emissions threshold. Let's call this threshold *crE*

$$\text{crE} : \text{Double}$$

and let *pS1* and *pS2* the probabilities of staying in a good world when the cumulated emissions are smaller or equal to *crE* and greater than *crE*, respectively:

$$\text{pS1} : \text{NonNegDouble}$$

$$30 \quad \text{pS2} : \text{NonNegDouble}$$

Thus, the probabilities of getting into a bad world below and above the threshold are $1 - pS1$ and $1 - pS2$, respectively. As a sanity check, we require $pS2$ to be less or equal to $pS1$.

Next, we have to specify the uncertainties about the availability of efficient technologies for reducing GHG emissions. This, too, can be done in terms of a critical number of decision steps

5 $crN : \mathbb{N}$

and of two probabilities: the probability of effective technologies for reducing GHG emissions becoming available when the number of decision steps is below or at crN and the probability for the case in which t is above crN :

$pA1 : NonNegDouble$

$pA2 : NonNegDouble$

10 Also for these probabilities we need a sanity check: $pA1$ shall be at most equal to $pA2$. Finally, we have to specify the uncertainties about the implementability of decisions on GHG emission reductions. Following the discussion in the previous section, we do so in terms of four conditional probabilities. These are the probability of implementing low emission measures when the current emissions measures are low and low emissions are selected pLL , the probability of implementing low emission measures when the current emissions measures are high and low emissions are selected pLH and their counterparts for high
 15 emissions:

$pLL : NonNegDouble$

$pLH : NonNegDouble$

$pHL : NonNegDouble$

$pHH : NonNegDouble$

20 Also for these probabilities, we require two sanity checks to be fulfilled: pLH shall not exceed pLL and pHL shall not exceed pHH . With these parameters in place, the transition function $next$ can be implemented by cases. For a full implementation, we refer the reader to `EmissionGame2`. As an example we discuss here the case in which the current state is

$x = (e, High, Unavailable, Good)$

the decision maker has opted for low emissions, e is smaller or equal to crE and t is smaller or equal to crN . In this case, the
 25 result of $next t x Low$ is a probability distribution with the following assignments:

$(e, Low, Unavailable, Good) \Rightarrow pLH * (one - pA1) * pS1$

$(e + 1, High, Unavailable, Good) \Rightarrow (one - pLH) * (one - pA1) * pS1$

$(e, Low, Available, Good) \Rightarrow pLH * pA1 * pS1$

$(e + 1, High, Available, Good) \Rightarrow (one - pLH) * pA1 * pS1$

30 $(e, Low, Unavailable, Bad) \Rightarrow pLH * (one - pA1) * (one - pS1)$

$(e + 1, High, Unavailable, Bad) \Rightarrow (one - pLH) * (one - pA1) * (one - pS1)$

$(e, Low, Available, Bad) \Rightarrow pLH * pA1 * (one - pS1)$

$(e + 1, High, Available, Bad) \Rightarrow (one - pLH) * pA1 * (one - pS1)$

Similarly for the other cases. Notice that the marginal probability of the new state to enter a bad world is $one - pS1$, as one would expect. Similarly, the probability of effective technologies for reducing GHG emissions becoming available is $pA1$ (we are considering the case $t \leq crN$) and the probability of implementing low emission measures is pLH as the current emission levels are high.

5 4.4 Reward function

To complete the specification of our stylized emission problem, we have to define the reward function and the measure

$$meas : Prob\ Val \rightarrow\ Val$$

according to which the decision maker weights uncertain outcomes. Unless stated otherwise, we will take Val to be $NonNegDouble$ (non-negative double precision floating point numbers) and $meas$ to be the expected value function. In this section we focus
 10 the attention on the reward function

$$reward : (t : \mathbb{N}) \rightarrow (x : State\ t) \rightarrow (y : Control\ t\ x) \rightarrow (x' : State\ (t + 1)) \rightarrow\ Val$$

The idea is that being in a good world yields one unit of benefits per step and being in a bad world yield less benefits. We can formalize this idea by introducing a dimensionless number

$$badOverGood : NonNegDouble$$

15 which represents the ratio between the step benefits in a bad world and the step benefits in a good world. It goes without saying that a constant ratio is a very crude approximation that can only be justified in a stylized problem. In sequential emission problems aiming at informing decision making under realistic conditions, the costs and the benefits of not transgressing global emission thresholds are likely to be time dependent and have to be carefully estimated, e.g., by running global climate models coupled with economic models and perhaps energy models. Unless otherwise stated, we will take $badOverGood$ to be equal
 20 to 0.5. Of course, we require the $badOverGood$ ratio to be smaller or equal to one.

Emitting GHGs also brings step benefits, e.g. by supporting economic growth. These can be represented as a fraction of the step benefits of being in a good world. Moreover, low emissions bring less benefits (higher costs) than high emissions and reducing emissions when effective technologies are unavailable costs more than reducing emissions when such technologies are available. We can summarize this state of affairs in term of three dimensionless numbers. A first number represents the
 25 ratio between the step benefits of low emissions and the step benefits in a good world when effective technologies for reducing GHG emissions are unavailable

$$lowOverGoodUnavailable : NonNegDouble$$

A second number represents the same ratio when effective technologies are available

$$lowOverGoodAvailable : NonNegDouble$$

and, finally, the ratio between the step benefits obtained through high emissions and the step benefits in good worlds

$highOverGood : NonNegDouble$

We require both $lowOverGoodUnavailable$, $lowOverGoodAvailable$ and $highOverGood$ to be smaller or equal to one, $lowOverGoodUnavailable$ to be smaller or equal to $lowOverGoodAvailable$ and the latter to be smaller or equal to $highOverGood$. Unless stated otherwise, we take $lowOverGoodUnavailable$, $lowOverGoodAvailable$ and $highOverGood$ to be equal to 0.1, 0.2 and 0.3, respectively.

With these notions in place, we can easily implement the reward function of our stylized emission problem. The idea is that the rewards only depend on the next state (the state during the period starting with the current decision) not on the current state or on the selected control. We have 8 cases with the following assignments

10	$(e, High, Unavailable, Good) \Rightarrow one$	$+ one * highOverGood$
	$(e, High, Unavailable, Bad) \Rightarrow one * badOverGood + one * highOverGood$	
	$(e, High, Available, Good) \Rightarrow one$	$+ one * highOverGood$
	$(e, High, Available, Bad) \Rightarrow one * badOverGood + one * highOverGood$	
	$(e, Low, Unavailable, Good) \Rightarrow one$	$+ one * lowOverGoodUnavailable$
15	$(e, Low, Unavailable, Bad) \Rightarrow one * badOverGood + one * lowOverGoodUnavailable$	
	$(e, Low, Available, Good) \Rightarrow one$	$+ one * lowOverGoodAvailable$
	$(e, Low, Available, Bad) \Rightarrow one * badOverGood + one * lowOverGoodAvailable$	

Completing the specification of our problem and computing optimal sequences of emission policies requires filling in some more details. These are annotated and discussed in `EmissionGame2`. They are pertinent to the notions of reachability, viability, finiteness and decidability. These notions are crucial for understanding the problem of computing optimal policies under uncertainty but their discussion would go well beyond the scope of this work. We refer the interested reader to Botta et al. (2017a).

5 Optimal policies

In this section we discuss optimal emission policies for the stylized emission problem of section 4 and study the impact of the uncertainties (1)–(3) on such policies. As explained in section 3, the computed policies have been machine-checked to be optimal. Thus, they only depend on our problem specification. This is simple enough to allow deducing some general properties that optimal decisions — decisions taken according to optimal policy sequences — have to fulfill.

A first one is that when the state of the world is bad, reducing emissions is never optimal. This is because, as posited in section 4, there is no way to make a transition from a bad world to a good world and, in a bad world in much the same way as in a good world, higher emissions bring more emission benefits. In other words, reducing emissions can only pay off if it allows avoiding transitions to a bad world, if perhaps only for a limited number of steps. A consequence is that in the last step it is always optimal to select high emissions.

Unless specified, we consider 9 decision steps with $crE = 4$ and $crN = 2$. Thus, it takes at least 5 decision steps (and 5 periods with high emissions) to achieve states in which the sum of the cumulated emissions exceeds crE and, therefore, the probability of a transition to a bad world increases from $pS1$ to $pS2$. Similarly, with $crN = 2$, it takes 3 decision steps to achieve states in which the probability that effective technologies for reducing GHG emissions become available increases

5 from $pA1$ to $pA2$.

In other worlds, if $pS1 = pA1 = 0$ and $pS2 = pA2 = 1$, effective technologies will be available (with certainty) after 4 decision steps. And after 5 periods of high emissions, a transition to a bad world will occur. This is the deterministic base case studied in the next section.

5.1 The deterministic base case

10 Before studying the impact of uncertainties on optimal policies, we consider the certain case. Beside $pS1 = pA1 = 0$ and $pS2 = pA2 = 1$ we also have $pLL = pLH = pHL = pHH = 1$. Thus, there is no uncertainty about the implementability of emission measures: decisions of reducing or increasing emissions are implemented with probability one.

Notice that the absence of whatsoever uncertainties implies that, for any initial state and policy sequence (optimal or not) there is exactly one possible state-control trajectory. Namely that determined by that policy sequence. Thus, for instance, if 15 we start in $(0, H, U, G)$ (zero cumulated emissions, high emissions, unavailable efficient technologies and a good world) and adopt the policy of constantly increasing emissions, we obtain the state-control trajectory

```
[ ((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H),  
((5, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((9, H, A, B), ) ]
```

with probability one. The sum of rewards associated to this “certain” trajectory is 9.7: these result from five periods in a good 20 world (step benefits equal to one), 4 periods in a bad world (step benefits 0.5) and 9 periods of high emissions (emission benefits per step of 0.3). As expected, efficient technologies for reducing GHG emissions become available at decision step 4 (after 4 decisions) and the transition to a bad world takes place after 5 periods of high emissions and 6 decisions. We can do a little bit better by selecting low emissions at every step. In this case the state-control trajectory is

```
[ ((0, H, U, G), L), ((0, L, A, G), L),  
((0, L, A, G), L), ((0, L, A, G), L), ((0, L, A, G), L), ((0, L, A, G), ) ]
```

What are optimal policy sequences like in the certain case? The intuition is that, in at least 4 decision steps, emissions should be high. This yields higher rewards at no risk of getting into a bad world. One would also expect that lower emissions are selected (and implemented with certainty) in states in which efficient technologies for reducing GHG emissions are available. The trajectory associated with an optimal sequence of policies

```
30 [ ((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), L),  
((4, L, A, G), L), ((4, L, A, G), L), ((4, L, A, G), H), ((5, H, A, G), ) ]
```


shows that such intuition is correct. The sum of rewards associated to this trajectory is 11.3. By selecting low emission starting from the fifth decision step, the optimal policy guarantees that the world stays in the good state. At the last decision step, high emissions are selected, as anticipated.

The computation supports the intuition that, in a world without uncertainties, it is best delaying emission reductions until 5 efficient technologies become available. Of course, this requires knowing the critical number of decision steps crN .

5.2 The impact of uncertainties about the implementability of decisions on emission reductions.

What happens to optimal policies if we factor in uncertainties about the implementability of decisions on emission reductions or increases?

Let's consider the case in which the probability of implementing low emission measures in the next period is higher if the 10 current emissions are already low than in the case in which the current emissions are high. Conversely, the probability of implementing high emission in the next period is higher if the current emissions are high. In other words, we have $pLH < pLL$ and $pHL < pH$ instead of $pLL = pLH = pH = 1$. Specifically, consider optimal policies for the case $pLL = pH = 0.9$ and $pLH = pH = 0.7$.

Our decision problem is now not anymore deterministic. Thus, a policy (optimal or not) entails a whole set of possible future 15 state-control trajectories. More precisely, we have $2^9 = 512$ possible trajectories: we take 9 decision step and, at every decision step and no matter whether we select low or high emissions, we have two possible outcomes. Now, the “business as usual” policy of always selecting high emissions yields the trajectory

```
[ ((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H),
  ((5, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((9, H, A, B), ) ]
```

20 with probability $0.9^9 \approx 0.387$. The two next most likely trajectories are

```
[ ((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H),
  ((5, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((8, L, A, B), ) ]
```

and

```
[ ((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H),
  ((4, L, A, G), H), ((5, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), ) ]
```

25 with probabilities of 0.043 and 0.033. The expected sum of rewards (remember that *meas* is the expected value function) is 9.904. The computed optimal policies for the same problem yield the trajectory

```
[ ((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), L), ((2, L, U, G), L), ((2, L, A, G), L),
  ((2, L, A, G), L), ((2, L, A, G), H), ((3, H, A, G), H), ((4, H, A, G), H), ((5, H, A, G), ) ]
```

30 with probability 0.234. The two next most likely trajectories are

[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), L), ((3, H, U, G), L), ((3, L, A, G), L),

((3, L, A, G), L), ((3, L, A, G), L), ((3, L, A, G), H), ((4, H, A, G), H), ((5, H, A, G),)]

[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), L), ((2, L, U, G), L), ((2, L, A, G), L),

5 ((2, L, A, G), L), ((2, L, A, G), H), ((2, L, A, G), H), ((3, H, A, G), H), ((4, H, A, G),)]

both with probability 0.078. The expected sum of rewards (remember that *meas* is the expected value function) is 11.085. Notice that, under uncertainties about the implementability of decisions on emission reductions or increases, optimal policies dictate more cautious best decisions: instead of waiting for efficient technologies for reducing GHG emissions to become available, optimal decision making requires starting to reduce emissions after only two decision steps.

10 The fact that higher uncertainties about the implementability of decisions on emission reductions or increases lead to more precautionary optimal policies is confirmed by computing optimal policies for the case $pLL = pHH = 0.7$ and $pLH = pHL = 0.5$. In this case optimal policies dictate low emissions in the first decision steps for the three most likely possible trajectories. This is still true in the limit $pLL = pHH = 0.5 + \epsilon$ for $\epsilon > 0$, $\epsilon \rightarrow 0$ although the advantage of optimal policies against non-optimal policies (e.g. business as usual policies) in terms of expected rewards tends to zero as ϵ goes to zero.

15 In the limit case in which the decision maker has no power to enforce its emission decisions for the next period and $pLL = pHH = pLH = pHL = 0.5$, any policy sequence is optimal, as one would expect. As discussed in section 3, this is an example of non-uniqueness of optimal policy.

5.3 The impact of uncertainties about the availability of efficient technologies for reducing GHG emissions

What if the probability of efficient technologies becoming available after 3 decision steps is less than one and there is a small
20 but not zero probability that such technologies become available before 3 decision steps?

With the same uncertainties as in 5.2 ($pLL = pHH = 0.9$ and $pLH = pHL = 0.7$) and $pA1, pA2$ equal to 0.1 and 0.9 instead of 0 and 1, we have now $2^n * (n + 1)$ possible trajectories⁵ for n decision steps. Thus, for $n = 9$, we have 5120 trajectories instead of just 512. The “business as usual” policy of always selecting high emissions yields the same most likely trajectory and a slightly higher expected sum of rewards: 9.91. The computed optimal policies also yield the same most likely trajectories
25 as in 5.2 although with lower probabilities, of course. The expected sum of rewards is 11.102.

Thus, perhaps surprisingly, uncertainties on the availability of efficient technologies for reducing GHG emissions have little impact on optimal decisions, at least when compared to the impact of uncertainties about the implementability of decisions on emission reductions.

⁵At each decision step, a possible state in which efficient technologies are not available, say a U-state, entails 4 possible next states: two in which efficient technologies are available and two in which they are not. A possible state in which efficient technologies are available (an A-state) only entails 2 possible next states because once technologies become available they stay available in all possible future states. Thus, after one decision step, we have two possible U-states and two possible A-states. After two decision steps, we have four possible U-states and eight possible A-states. After three decision steps we have eight possible U-states and twenty-four possible A-states. And so on.

5.4 The impact of uncertainties about the implications of exceeding a critical threshold of cumulated GHG emissions.

So far we have assumed that, if the critical cumulated GHG emissions threshold crE was exceeded, the world would turn to a bad state with probability one. Conversely, for cumulated emissions below the crE , the probability of a transition into a bad world was zero.

5 What if we assume a 10% probability of turning to a bad world for cumulated emissions below the crE and a 10% chance of staying in a good world above the critical threshold?

Adding these uncertainties to the certain “base” case yield 10 possible trajectories. These correspond to transitions to a bad world in the first, second, … and ninth decision step. In this scenario, always selecting high emissions yields the trajectory of the certain case

10
$$[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H), ((5, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((9, H, A, B),))]$$

with probability 0.531. The expected sum of possible rewards is lower than in the certain case: 9.076. Similarly, optimal policies under uncertainty about the implications of exceeding crE yield the possible trajectory

15
$$[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), L), ((4, L, A, G), L), ((4, L, A, G), L), ((4, L, A, G), H), ((5, H, A, G),))]$$

with probability 0.387. In the certain case, this was also “the” (certain) optimal trajectory. The expected sum of possible rewards is 9.731: much lower than in the certain case but still better than for the “business as usual” policies.

These results suggest that, as for the case of uncertainties about the availability of efficient technologies, uncertainties about the implications of exceeding crE do not affect optimal policies substantially: the intuition that lower emissions should be selected (and implemented with certainty) in states in which efficient technologies for reducing GHG emissions are available still holds.

Adding uncertainties about the implications of exceeding crE on the top of uncertainties about the implementability of decisions and of uncertainties about the availability of efficient technologies also does not change substantially the understanding obtained in section 5.2 and 5.3. But it brings some new unexpected results.

25 With $p_{LL} = p_{HH} = 0.9$, $p_{LH} = p_{HL} = 0.7$, $p_{A1} = 0.1$, $p_{A2} = 0.9$ and $p_{S1} = 0.9$, $p_{S2} = 0.1$ one obtains 51200 possible trajectories. For “business as usual” policies, the most likely is the usual

$$[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), H), ((4, H, A, G), H), ((5, H, A, G), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((9, H, A, B),))]$$

with probability 0.135. Remember that, in absence of uncertainty about the implications of exceeding crE the three most likely 30 trajectories were

[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), L), ((2, L, U, G), L), ((2, L, A, G), L),

((2, L, A, G), L), ((2, L, A, G), H), ((3, H, A, G), H), ((4, H, A, G), H), ((5, H, A, G),)]

[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), L), ((3, H, U, G), L), ((3, L, A, G), L),

5 ((3, L, A, G), L), ((3, L, A, G), L), ((3, L, A, G), H), ((4, H, A, G), H), ((5, H, A, G),)]

[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), L), ((2, L, U, G), L), ((2, L, A, G), L),

((2, L, A, G), L), ((2, L, A, G), H), ((2, L, A, G), H), ((3, H, A, G), H), ((4, H, A, G),)]

with associated rewards 11.2, 11.3, 11.1 and probabilities 0.154, 0.051 and 0.051. The expected sum of possible rewards was
 10 11.102. Adding 10% of uncertainty about the implications of exceeding *crE* yields

[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, G), H), ((3, H, U, G), L), ((3, L, A, G), L),

((3, L, A, G), L), ((3, L, A, G), L), ((3, L, A, G), H), ((4, H, A, G), H), ((5, H, A, G),)]

[((0, H, U, G), H), ((1, H, U, B), H), ((2, H, U, B), H), ((3, H, U, B), H), ((4, H, A, B), H),

15 ((5, H, A, B), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((9, H, A, B),)]

[((0, H, U, G), H), ((1, H, U, G), H), ((2, H, U, B), H), ((3, H, U, B), H), ((4, H, A, B), H),

((5, H, A, B), H), ((6, H, A, B), H), ((7, H, A, B), H), ((8, H, A, B), H), ((9, H, A, B),)]

with expected rewards 11.3, 7.2, 7.7 and probabilities 0.059, 0.025 and 0.023, respectively. The expected sum of possible
 20 rewards is 9.543. Now, optimal policies for the most likely trajectory require postponing emission reductions by one step: low
 emission are selected starting from $t = 3$ instead of $t = 2$.

Notice that the optimal policies require constant high emissions both for the second and for the third most likely trajectories!
 This is because, in these trajectories, the world enters a bad state right after the first decision step (second trajectory) or after
 25 the second decision step (third trajectory). Indeed, the rewards associated to the second and to the third trajectories (7.2 and
 7.7, respectively) are significantly lower than the rewards associated to the most likely trajectory (11.3).

Notice also that, even though the probability of transitions into a bad world is only 0.1 for cumulated emissions below *crE*,
 the trajectory that entails such a transition immediately after the first decision step (the second one) is more likely to occur than
 the trajectory in which the world stays in the good state for the first period (third one).

This seems at the first sight counter-intuitive. But it can easily be verified by inspection⁶ and is in fact easily explained: the
 30 crucial point is that the probability of entering a bad world at the first decision step (and then, necessarily, staying in a bad
 world) is 0.1. By contrast, the probability of staying in a good world for one period and then getting into a bad world is, *ceteris paribus*,
 0.9 * 0.1. This difference makes the second trajectory more likely than the third one. Of course, both trajectories are
 much less likely than the first one which is a realization of precautionary policies as in the cases discussed in 5.2 and 5.3.

⁶Given the probabilities $pS1$, $pS2$, $pA1$, $pA2$, pLH , pHL and pHH as above, the probability of a given trajectory is just the product of the probabilities of the corresponding transitions.

6 Conclusions

We have studied the impact of uncertainties about 1) the implementability of decisions on emission reductions, 2) the availability of technologies for reducing emissions and 3) the implications of exceeding a critical threshold of cumulated emissions on optimal emission policies in a stylized sequential emission problem.

5 In a nutshell, the results presented in section 5 support the conclusion that uncertainties about the implementability of decisions on emission reductions (or increases) call for more precautionary policies. By contrast, uncertainties about the implications of exceeding critical cumulated emission thresholds tend to make precautionary policies sub-optimal.

10 More specifically, the results of section 5 suggest that uncertainties about the implementability of decisions on emission reductions and, up to a more limited extent, uncertainties about the implications of exceeding critical cumulated emission thresholds have a greater impact on optimal emissions policies than uncertainties on the availability of effective technologies for reducing GHG emissions.

15 This is at the first glance perhaps a bit surprising but actually quite understandable: if decisions on emission (no matter whether reductions or increases) can be implemented with certainty, it is obviously better to delay necessary but costly reductions until available technologies make abatements cheaper. This holds as far as delays do not lead global emissions to exceed the critical threshold crE .

But if we cannot be sure that future decisions will be implemented with certainty – for instance, because of inertia in legislation or political instability – than starting implementing emission reductions (or trying doing so) sooner yields higher rewards. This is a typical case in which precautionary policies are optimal.

20 How earlier is it optimal to undertake costly abatement steps (rather than waiting for technological innovation to make emission reductions cheaper) very much depends on the rewards structure and on the uncertainties of the specific emission problem at stake.

25 Perhaps more surprisingly, the results of section 5.4 suggest that the optimal time for starting reducing emissions also depends on the level of uncertainty about the implications of trespassing critical thresholds of cumulated emissions. As these uncertainties increase, precautionary policies become sub-optimal. In other words: the better we can estimate the consequences of exceeding critical thresholds, the more does it pay off adopting precautionary policies.

A caveat is probably in order here: the results presented in section 5.4 offer a rather limited view on the impacts of uncertainties about the implications of exceeding critical thresholds of cumulated GHG emissions on optimal policies. It is true that we have performed a few more assessments (with probabilities of 5% and 20% of turning to a bad world for cumulated emissions below crE , not reported section 5.4) that clearly support the conclusions drawn above.

30 However, our statistics on the set of possible trajectories associated with a given policy sequence (optimal or not) has been throughout section 5 very rudimentary: we have only assessed the three most likely trajectories, their values and probabilities and the expected sum of rewards.

In studying the impacts of uncertainties about the implications of exceeding critical thresholds, we have to do with 51200 possible trajectories for every single policy sequence. In this case, a more comprehensive statistics would probably be at place. This is computationally challenging, see section 7.

Thus, the conclusions that we can draw from the results of section 5 are necessarily preliminary. Notice, however, that they
5 are consistent with the analysis reported in Webster (2008) for a two-step decision problem.

It is probably fair to also point out that, as uncertainties on the implementability of emissions decisions increase and (therefore) optimal policies require more and more precautionary approaches, the advantages (in terms of rewards) of earlier emission reductions against delays do vanish: in the limit case in which political decisions have no bearing on the measures actually implemented, all policies are optimal.

10 It should also be remembered that, in our idealized problem, we have kept the cumulated emission threshold crE and the critical number of decision steps for technological innovation crN fixed. In increasing the uncertainty about the availability of technologies for reducing emissions and about the implications of exceeding crE , we have modified the probability distributions below and above crN and crE symmetrically. Thus, taking as reference the certain case, we have increased the probability that efficient technologies become available before crN steps from zero to 0.1 and at the same time decreased the
15 probability after crN from one to 0.9. Similarly for uncertainties on the consequences of exceeding crE . It goes without saying that shifting crN and crE does indeed have a strong impact on optimal policies.

Thus, the results presented in section 5 do not imply that improving the accuracy of crN and crE estimates is not worth the efforts. But they suggests that obtaining more realistic estimates for the probability of effective technologies for reducing
20 GHG becoming available before and after a critical date is perhaps not as crucial (for computing optimal emission policies for realistic decision problems) as improving our understanding of the implementability of decisions on emission reductions or increases.

Obtaining plausible estimates for the probabilities of being able to implement decisions on emissions reductions or increases naturally brings a political perspective into the problem of computing plausible optimal emission policies.

7 Future work

25 In the introduction, we have explained that realistic GHG emission problems involve more than one decision makers (countries) in a competitive situation rather than a single decision maker.

To the best of our knowledge, a generic computational theory for optimal decision making under uncertainty, multiple
30 players and for finite horizon sequential decision problems is still missing. Developing such a theory is a challenging research program. The theory would have to span the border between control and game theory and likely require the introduction of new equilibrium notions. One promising approach towards developing such theory is to extend the formalization of sequential decision problems presented in Botta et al. (2017b) using the notions of *quantifier* and of *selection function* (together with their respective products) introduced in Escardo and Oliva (2010); Hedges (2017) for infinite horizon open games.

From a more applicational point of view, there are two obvious ways in which the work presented in this paper could be extended to provide more useful insights into the problem of making optimal decisions on emission paths under uncertainty.

One would be to compute optimal emission policies for a realistic emission problem. Beside extending the notions of state and control spaces and, e.g., allow the decision maker to pick up a few intermediate emission levels between *Low* and *High*, 5 this would require assessing the costs and the benefits of implementing a given emission level using a realistic integrated assessment model. Such an enterprise would require an interdisciplinary effort on the border between climate science and computing science. Technically, it would require extending the framework for the specification of sequential decision problems `SequentialDecisionProblems`⁷ with a small domain specific language for emission problems.

Another way of extending the work presented in this paper would be to keep the focus on stylized emission problems like the 10 one of section 4 but improve the statistical study of the logical consequences of taking decisions according to optimal policy sequences. This could yield to tools that support accountable decision making in real-time situations, for instance, during negotiations. Technically, this would imply, among others, extending `SequentialDecisionProblems` with algorithms for computing all optimal policies for a given decision problem or perhaps just a certain number of optimal policies.

As we have seen at the end of section 5, computing optimal policies and parsing large collections of possible trajectories or 15 “decision networks” can be computationally challenging even for idealized problems.

Thus, extending `SequentialDecisionProblems` for computing more optimal policy sequences and more comprehensive statistical analyses of decision networks would benefit from exploiting the concurrency inherent in many of the algorithms presented in Botta et al. (2017b). This is also an interdisciplinary enterprise involving formal methods (concurrent implementations should preserve the machine checkable optimality proofs that come with the sequential implementation), 20 high-performance computing and climate science.

Acknowledgements. The work presented in this paper heavily relies on free software, among others on Idris, Agda, GHC, git, vi, Emacs, L^AT_EX and on the FreeBSD and Debian GNU/Linux operating systems. It is our pleasure to thank all developers of these excellent products.

⁷ In <https://gitlab.pik-potsdam.de/botta/IdrisLibs>

References

A., P. E. and Darshan, K.: Sequential Climate Change Policy, Wiley Interdisciplinary Review: Climate Change 2, pp. 744–56, <https://doi.org/10.1007/s10666-005-9014-6>, 2011.

Bellman, R.: Dynamic Programming, Princeton University Press, 1957.

5 Botta, N., Jansson, P., and Ionescu, C.: Contributions to a computational theory of policy advice and avoidability, Accepted for publication in the Journal of Functional Programming, 2017a.

Botta, N., Jansson, P., Ionescu, C., Christiansen, D. R., and Brady, E.: Sequential decision problems, dependent types and generic solutions, Logical Methods in Computer Science, 13, [https://doi.org/10.23638/LMCS-13\(1:7\)2017](https://doi.org/10.23638/LMCS-13(1:7)2017), [https://doi.org/10.23638/LMCS-13\(1:7\)2017](https://doi.org/10.23638/LMCS-13(1:7)2017), 2017b.

10 Brady, E.: Programming in Idris : a tutorial, <http://idris-lang.org/tutorial>, 2013.

Brady, E.: Type-Driven Development with Idris, Manning Publications, 2017.

Curry, H. B.: Outlines of a Formalist Philosophy of Mathematics, North-Holland Publishing Company, Amsterdam, 2 edn., 1958.

Escardo, M. and Oliva, P.: Selection functions, bar recursion and backward induction, Mathematical Structures in Computer Science, 20, 127–168, <https://doi.org/http://doi.acm.org/10.1145/1167473.1167499>, 2010.

15 Finus, M., van Ierland, E., and Dellink, R.: Stability of Climate Coalitions in a Cartel Formation Game, FEEM Working Paper No. 61.2003, <http://ssrn.com/abstract=447461>, 2003.

Fudenberg, D. and Tirole, J.: Game Theory, MIT Press, 1991.

Hardin, G.: The Tragedy of the Commons, Science, 162, 1243–1248, 1968.

Hedges, J.: Towards compositional game theory, Ph.D. thesis, Towards compositional game theory, <https://qmro.qmul.ac.uk/xmlui/handle/123456789/23259>, 2017.

20 Helm, C.: International emissions trading with endogenous allowance choices, Journal of Public Economics, 87, 2737–2747, 2003.

Ionescu, C.: Vulnerability Modelling and Monadic Dynamical Systems, Ph.D. thesis, Freie Universität Berlin, 2009.

Jobst, H., Lessmann, K., and Zou, Y.: Self-enforcing strategies to deter free-riding in the climate change mitigation game and other repeated public good games, 2011.

25 Norell, U.: Towards a practical programming language based on dependent type theory, Ph.D. thesis, Chalmers University of Technology, <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.7934&rep=rep1&type=pdf>, 2007.

on Climate Change, I. P.: Climate Change 2007: Synthesis Report. Contributions of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007.

Schönfinkel, M.: Über die Bausteine der mathematischen Logik, Mathematische Annalen, pp. 305–316, 1924.

30 Sonja, P.: Uncertainty and economic analysis of climate change: A survey of approaches and findings, Environmental Modeling and Assessment, pp. 1–17, 2006.

Webster, M. D.: The Curious Role of "Learning" in Climate Policy: Should We Wait for More Data?, Tech. rep., MIT Joint Program on the Science and Policy of Global Change, Report No. 67, 2000.

Webster, M. D.: Incorporating Path Dependency into Decision-Analytic Methods: An Application to Global Climate-Change Policy, Decision Analysis, 5, 60–75, 2008.

35